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Abstract:  The present study applies empirical methods to the problem of predicting large U.S.
commercial bank failures.  Because of sampling limitations, scant research has examined the
feasibility of using computer-based early warning systems (EWSs) to make such predictions.  In
the late 1980s and early 1990s numerous large banks failed in the United States, enabling us to
collect a sample of 50 failed banks with more than $250 million in assets as well as a matched
sample of 50 non-failed large banks.  These samples were split into original and holdout samples
of different sizes.  Both the parametric method of logit analysis and the nonparametric approach
of trait recognition are employed to (1) develop classification EWS models based on the original
samples and (2) test the predictive ability of these models using the holdout samples.  Both logit
and trait recognition performed well in terms of classification results.  However, over the holdout
samples, trait recognition outperformed logit in a variety of tests, including overall accuracy,
large bank failure accuracy, weighted efficiency scores, and stability using data from one year
before, as well as two years before, failure.  Other results from the trait recognition models
reveal that complex two- and three-variable interactions between financial and accounting
variables contain additional information about bank risk not found in the individual variables
themselves.  We conclude that nonparametric EWSs can provide valuable information about the
future viability of large banks.
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I.  Introduction

Seminal work by Beaver (1966) and Altman (1968) showed how computer-based models

relying on accounting information could predict the failures of firms. Their work sparked a

continuing stream of research in the corporate financial literature (e.g., see Beaver (1968),

Edmister (1972), Blum (1975), Altman, Haldeman, and Narayanan (1977), Martin (1977),

Ohlson (1980),  Scott (1981), McFadden (1983), Zavgren (1985), Jones (1987), Keasey and

McGuinness (1990), Platt and Platt (1990), Altman (1993), Coats and Fant (1993), Altman,

Marco, and Varetto (1994),  Altman and Narayanan (1997), and others).1 Bank regulators are

keenly interested in applying these methods to banks to supplement the information they receive

from onsite examinations. Computer-based models could be used as early warning systems

(EWSs) to help prevent some bank failures or reduce the cost of failure. Extensive research on

failed banks has confirmed that computer-based models perform well as EWSs (e.g., see Meyer

and Pifer (1970), Stuhr and Van Wicklen (1974), Sinkey (1975), Santomero and Vinso (1977),

Bovenzi, Marino, and McFadden (1983), Korobrow and Stuhr (1985), West (1985), Maddala

(1986), Lane, Looney, and Wansley (1986), Whalen and Thomson (1988), Espahbodi (1991),

Thomson (1993), Kolari, Caputo, and Wagner (1996), and others).

Few studies have sought to determine whether the failures of large banks are predictable.

Previous work on predicting large bank failures have focused on the usefulness of stock price

data as a bank-specific EWS (e.g., see Pettway (1976, 1980), and Peavy and Hempel (1998)).

Alternatively, several other studies have attempted to use the financial ratios of individual banks

to predict their failure [e.g., see Sinkey (1985) and Federal Deposit Insurance Corporation

(1997)]); however, inadequate sample sizes have prevented analysts from studying large banks

generically.2   In this regard, the search for ways to preclude the failures of large banks is

becoming increasingly important, because the ongoing consolidation of the banking industry is
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increasing these banks’ numbers (see Berger (1995) and Boyd and Graham (1996)).  Such

consolidation raises new policy challenges for regulatory and government entities charged with

the responsibility of ensuring the banking system’s safety and soundness.  One policy response

to the potential dangers of banks that are too-big-to-fail (TBTF) (including competitive

inequalities, moral hazard, and inefficiency) is to increase bank regulation of large institutions

(see Hoenig (1999)).3

The development of computer-based EWSs for large banks would be consistent with this

policy.  To create a database for such EWSs, we collected data from the period 1989 to 1992,

when numerous large banks failed in the United States. We were able to gather a sample of 50

large failed banks with more than $250 million in assets.4  Although a total of 50 large bank

failures is large by historical standards, it is quite small in terms of minimum sampling

requirements in most EWS models.  It is common practice to split the sample of failed banks into

(1) an original sample that gives rise to a classification model and (2) a holdout sample that is

reserved for determining the EWS model’s efficacy.  In our case this sampling design leaves

only 25 large failed banks in the original and holdout samples and only 25 large non-failed banks

in the matched-pair (by size and location) original and holdout samples.  Both parametric and

nonparametric EWS models are tested using these samples.  Because of its widespread

application in previous finance and banking studies, the parametric approach of logit analysis

was chosen.  Also, we selected the nonparametric approach of trait recognition as applied to

bank failures in Kolari, Caputo, and Wagner (1996) because of its reported usefulness on small

samples.5  A priori, we expect that nonparametric EWSs will experience less difficulties with

small sample sizes than parametric EWSs because the latter models are likely to violate variable

distribution assumptions.  To further examine the effects of small samples of large banks on the

EWSs, we repeat the comparative analyses using smaller original and holdout samples which
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have larger minimum asset sizes (e.g., a second sample with the largest 15 failed and 15 non-

failed banks and a third sample with the largest 10 failed and 10 non-failed banks in the original

and holdout samples).

Using accounting data from both one year and two years prior to the failures, we found

that computer-based EWSs are a viable means of evaluating large bank failure risk.  Both logit

and trait recognition performed well in the classification results of original samples; the accuracy

rates were between 90 percent and 100 percent.  However, with regard to the prediction results

using holdout samples, trait recognition outperformed logit in such tests as overall accuracy,

large bank failure accuracy, weighted efficiency scores, and stability using data from one year

and two years prior.  In regard to the main task of predicting large bank failures, a particularly

noteworthy finding is that, while logit predicted large bank failures no better than chance in

holdout samples, trait recognition was able to predict most of the large bank failures both one

year and two years prior to collapse.  Other results from the trait recognition models reveal that

complex two- and three-variable interactions between financial and accounting variables contain

information about bank risk not found in individual variables.  We conclude that nonparametric

EWSs can provide valuable information about the future viability of large banks.

The remainder of the paper is organized as follows: Section II overviews logit and trait

recognition EWS models, section III describes our empirical methodology, section IV reports the

empirical results, and section V provides a summary and conclusion.
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II.  EWS Models

Parametric Modeling Approach -- Logit Analysis

A logistic distribution is used in many limited dependent variable applications.  The

resulting model (i.e., a logit model) is common in the EWS literature of finance and banking.

The posterior probability of failure can be derived directly from the following logit specification:

log[Pi/(1-Pi)] = a + b1Xi1 + b2Xi2 + … + bnXin,                    (1)

where Pi = the probability of bank i’s failure, and b = (b1, …, bn) is a vector of regression

coefficients for predictor variables Xi (i = l, …, n).  The logit model is preferred over the linear

discriminant (MDA) model because it does not require multivariate normality among the

independent variables and is computationally more tractable (see Espahbodi (1991, p. 56)).

When the assumptions of MDA hold (namely, multivariate normality, equal variance-covariance

matrices, and linearity), logit is equivalent to MDA.

Because of small sample sizes and the need to preserve degrees of freedom, we applied a

stepwise logistic regression to select a subset of the most discriminating independent variables.

Since no variables entered the model at the 10 percent significance level, we used a 30 percent

significance level. The general lack of significance of the independent variables can be partially

attributed to the small sample sizes (i.e., the cumulative distribution of the error terms in the

regression relationship may not approximate a logistic function).

Logit models (and many other EWS methods) generate coefficient estimates for each of

the variables and associated test statistics that indicate how well they discriminate between failed

and non-failed banks.  However, there are some potential drawbacks in terms of interpreting the

results.  For example, it is not possible to determine whether a significant variable is more useful

in identifying failed banks than non-failed banks (i.e., no information about a variable’s ability to

reduce Type I versus Type II errors is available).  Also, it is not possible to determine which of
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the variables is “out of line” for a particular bank. Such distinctions must be made in a univariate

context by comparing mean values of variables in failed and non-failed banks.

Trait Recognition Approach

 In this section, we briefly describe in general terms trait recognition as an EWS method.6

For a more in-depth description of the technique, see the appendix.  Building a trait recognition

model is a multi-step process.  The procedure involves:  (1) selecting cutpoints for each of the

variables, (2) assigning the variables binary codes, (3) constructing a trait matrix for each

observation, (4) identifying good and bad traits (or distinctive features), and (5) selecting

classification rules for the voting matrix.  The model is evaluated for its ability to predict failed

and non-failed banks in a holdout sample using the voting matrix.  As already mentioned, trait

recognition is a nonparametric EWS approach that relies on no statistical or distributional

assumptions about the predictor variables.

A unique aspect of trait recognition is that it gathers and exploits information contained

in complex interactions of variables.  Individual traits are constructed from different segments of

the distribution of each variable and the interactions of these segments with one or more other

variables’ segmented distributions.  As an example, a trait of a failing bank could be a moderate

level of return on assets and a high level of nonperforming loans as a proportion of total loans.

Alternatively, a trait could be a moderate level of return on assets and a low level of equity

capital to total assets.  Notice that, upon dividing variables’ distributions into low, middle, and

upper segments, numerous interaction traits can be constructed between any two variables.  This

type of (binary) interaction variable captures different information than one can get by simply

multiplying one variable by another variable, as typically done in finance, economics, and other

fields of study.7
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Once all possible traits of the variables are tabulated for all banks, trait recognition uses a

search routine to cull traits that do not discriminate between failed and non-failed banks.

Traditionally, EWS methods select one set of discriminatory variables; by contrast, trait

recognition specifies two sets of discriminators: (1) safe traits associated with non-fail banks, and

(2) unsafe traits associated with failing ones.  These safe and unsafe traits are known as features.

By tallying the number of safe and unsafe features for each bank, sample banks can be placed in

a voting matrix defined by the number of safe and unsafe votes.  Finally, the researcher selects

rules for determining which cells in the voting matrix are safe (dominated by failed banks) or

unsafe (dominated by non-failed banks) so that the observations can be used to classify and

predict.

The trait recognition algorithm automatically builds the network of interactions with only

a moderate amount of researcher input at various stages of its development (known as the

learning phase).  In contrast to neural networks in which interactions between variables are in a

so-called hidden layer, trait recognition enables researchers to interpret the final results easily

using a catalog of all interactions between variables in the model as reflected in the features.

Unlike logit and other EWS methods, trait recognition produces variables (i.e., safe and unsafe

features) that are clearly associated with either failed or non-failed banks.  Simply by looking at

the voting matrix, one can find a bank’s position with respect to any variable as well as its

standing relative to other banks.  Since a record for each bank is provided that details its specific

safe and unsafe features, it is obvious which features are out of line for any particular bank.
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III.  Empirical Methodology

Bank Samples

All U.S. commercial banks with assets greater than $250 million closed by the FDIC in

the period 1989-1992 make up the large failed bank sample (n = 50).  To create a matched-pair

sample, we selected large non-failed banks for these failed banks according to the following

criteria:  (1) location in the same market as proxied by MSA and (2) nearest in asset size to the

failed bank in the month of failure.  The first criterion controls for size as a factor in failure.  The

second criterion controls for a difference in regulatory treatment and financial flexibility between

large banks and small banks, as observed by Cole and Gunther (1994). Since our sample’s total

asset distribution ranges from $250 million to $14 billion, size differences can be substantial.

While the matched-pair sampling design controls for such differences to some degree, we also

conducted further analyses of the largest 30 failed banks (assets greater than $500 million), in

addition to the largest 20 failed banks (assets greater than $700 million).  These runs focus on

progressively larger failed banks and further test the EWS capability of computer-based models

using accounting data.

The second matching criterion attempts to control for different economic and competitive

regional conditions among large banks across the country.  During the period under study, most

of the bank failures were concentrated in oil-dependent states (e.g., Texas) and areas where once-

booming real estate had “busted” (e.g., the Northeast).  Severe financial distress in some regional

banking sectors no doubt disrupted the normal market behavior of many banks.  These factors

are discounted as much as possible by ensuring that each matched pair of failed and non-failed

banks are from the same location.

Analyses are run both one year and two years prior to bank failures.  While the failed

bank sample remains the same in both of these runs, the matched-pair samples change because
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some paired non-failing banks do not pass the size-matching criterion.  Out of 50 matched-pair

non-failed banks in the one-year-prior sample, about 20 percent were replaced in the two-years-

prior sample by another non-failing bank.

The matched pairs of 50 failed and 50 non-failed banks for one year and two years prior

to failure were ordered by failed bank size and divided equally into an original sample and a

holdout sample by using every other matched pair.  The original samples were used to build the

bank failure classification models, and the holdout samples were used to investigate the

predictive power of the logit and trait recognition models.

Table 1 gives details of these bank samples.  We have listed the names of the failed banks

but not those of the non-failed banks (in order to avoid possible market reactions to our analyses

of these banks).  In most cases the matched non-failed bank’s asset size is within 30 percent of

that of the corresponding failed bank.

Independent Variables

Table 2 lists the independent variables and their mean values for the 25 failed and 25

non-failed banks in the original and holdout samples both one year prior and two years prior to

the quarters in which failures occurred.  Proxies for a variety of bank condition indicators are

calculated from quarterly call report data, including size (X1, X2, and X28), profitability (X5 and

X7), capitalization (X9), credit risk (X11, X13, X15, and X25), liquidity (X18), liabilities (X20

and X22), and diversification (X26).  Size is measured in terms of both individual bank and

holding company total assets, because the holding company is a source of strength that can

reduce a bank’s risk of failure.  We also constructed a diversification measure by taking the sum

of squared ratios of business loans, real estate, consumer loans, and securities to total assets.
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These proxies and others in table 2 are fairly standard measures of bank condition that regulators,

investors, and other interested parties monitor over time in performance evaluations.

In an effort to partially reflect the temporal behavior of the variables, variability measures

were calculated.  For example, based on data over the four quarters prior to failure for a

particular bank, we calculated the maximum difference between quarters for a variable divided

by its mean level over the four quarters.  Presumably the financial performance of banks nearing

collapse will vary from the norms.  Since some banks have sudden changes in asset size prior to

failure, we added another measure of size stability that used the mean change (rather than mean

level) in total assets.

As shown in table 2, the mean values of the independent variables for the failed banks are

significantly different from those for non-failed banks. Denoted by asterisks, the variables that

have significant (at the 10 percent level) t-statistics for mean differences between failed and non-

failed banks in all samples are X7 (profitability), X9 (capitalization), and X13 (credit risk).  In

addition, the variables X2, X5, X9, X15, X16, X20, X21, X22, and X25 are significantly

different for failed and non-failed banks in at least one sample.  Of these variables, X8, X10,

X16, and X21 are variability measures and the remainder are in levels.  Altogether, 14 out of 28

variables in table 2 have significantly different means in one or more of the four sample sets of

data.

Parametric models such as logit tend to select variables based on the strength of the

statistical relationship characterized in univariate tests.  The 14 variables cited above are most

likely to be prominent variables in the logit models.  By contrast, nonparametric models such as

trait recognition may well be expected to be influenced by other predictors because they are not

grounded in statistical properties.
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IV.  Empirical Results

Logit Models

Table 3 reports the estimated logit model for each bank sample and related classification

and prediction results.  The models employed about 40 percent of the 28 independent variables.

As expected, the variables with significant univariate t-statistics for mean differences in table 2

are frequently significant in the multivariate logit models.

As shown in table 3, the classification results for the logit models using the original

samples are quite strong using data from one year prior to failure (panel A) and two years prior

(panel B).  Based on the original sample (i.e., n = 50) and smaller samples of progressively larger

banks (i.e., n = 30 and n = 20), four out of six logit models obtained 100 percent correct

classification.  The remaining logit models obtained at least 90 percent correct classification.

These results suggest that the logit approach performs well within sample.

Table 3 also shows that the logit prediction results using the ho ldout samples are

moderately accurate, with the percentage correct falling to between 60 percent and 75 percent.

In the n = 50 and n = 30 samples the one-year-prior models outperformed the two-years-prior

models, and vice versa for the n = 20 sample.  Since the results for one-year-prior and two-years-

prior models are mixed, we infer that the model’s predictive ability was not substantially affected

by extending the forecasting horizon from one year to two years.  Unfortunately, the EWS

efficacy of the logit models is suspect because between 40 percent and 65 percent of the failed

banks are not predicted to fail (Type I errors). Because of the magnitude of such errors, one must

question the value of the model to bank regulatory agencies. We infer that, although the logit

models have a moderate degree of overall predictive power, their out-of-sample performance is

not better than random chance in the case of large bank failures.
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Trait Recognition Models

Tables 4 to 6 contain the results for the trait recognition models.  For purposes of

documentation, table 4 lists the trait recognition cutpoints for each of the 28 independent

variables using the original sample (n = 50).  Cutpoints were automatically generated one

standard deviation above and below the variable means.  As discussed in the previous section,

two cutpoints for each variable divide their distributions into three segments for purposes of

binary coding of the variables and subsequent construction of binary strings for each bank.

Table 5 provides further documentation of the trait recognition models by listing the safe

and unsafe features employed in the one-year-prior and two-years-prior models (as shown in

panels A and B, respectively) for the original sample (n = 50).  Notice that the only variable that

is not incorporated in the features is X28, which is calculated as the ratio X1/X2 (or bank total

assets divided by holding company total assets).  Unlike the logit models, the trait recognition

method employed all variables as predictors, with the exception of variables with redundant

information contained in interactions of other variables.

Table 5 shows that more than 50 percent of the safe and unsafe features contain three-

variable interactions (i.e., 44 out of 71 features and 26 out of 46 features in the one-year-prior

and two-years-prior models, respectively).  Most other features are two-variable interactions,

with few features defined by a single variable.  These results suggest that most valuable

information in identifying large failing banks is contained in complex variable interactions.8

However, most EMS methods, with the exception of artificial neural networks with multiple

interactive layers, do not exploit the information contained in variable interactions.  Even if these

methods are run with a comprehensive list of interaction variables, as already discussed, they still

would not parallel the complex interactions used in the traits model.9
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Table 6 reports the classification and prediction results for the trait recognition models.

All six original sample runs (i.e., one-year-prior and two-years-prior data models using n = 50, n

= 30, and n = 20 banks) obtained 100 percent correct classification.  Concerning predictive

ability on the holdout samples, the trait recognition models correctly identified from 63 percent

to 95 percent of large banks.  In contrast to the logit results, the one-year-prior results in panel A

of table 6 (i.e., 80 percent to 95 percent predictive accuracy) consistently attained a higher

predictive accuracy than the two-years-prior results in panel B (i.e., 63 percent to 70 percent).

Also unlike the logit models’ results, the trait recognition models tended to perform well above

chance in predicting failing banks.  In the one-year-prior models 23 out of 25, 11 out of 15 and

10 out of 10 failures are correctly predicted in the samples with n = 50, n = 30, and n = 20,

respectively.  In the two-years-prior models, 17 out of 25, 10 out of 15, and 8 out of 10 are

correctly predicted in the aforementioned sample sizes, respectively.  These Type I error results

are considerably stronger than those obtained from the logit models, which had considerable

difficulty in predicting large bank failures in the holdout samples.  Notably, in all six test cases

using one-year-prior and two-years-prior data and different sample sizes, trait recognition

correctly predicted a greater number of failures than logit.

Weighted Efficiency Scores

In table 7 we report the weighted efficiency (WE) scores for logit versus trait recognition

models.  The WE scores, as noted by Espahbodie (1991), adjust overall prediction rates for the

fact that Type I errors are more serious than Type II errors.  The WE scores indicate that the trait

recognition models outperformed the logit models in all samples.  The former models did

especially well using one-year-prior data. (For example, based on the n = 20 sample containing

the largest banks, the one-year-prior WE score is 86.4 for the trait recognition model and 24.0 for
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the logit model.) These results suggest that the trait recognition model may be an effective early

warning system (EWS) for large banks.

Stability of Predictions for Individual Large Banks

Lastly, details of the prediction results for each of the failed banks in the holdout samples

based on the logit and trait recognition models are presented in tables 8 and 9, respectively.  In

table 8 we report the predicted probabilities of failure estimated by the logit models using the

different sample sizes.  The incorrectly classified failing banks are marked with an asterisk.

Given that the banks are shown in rank order, it is apparent that there is no systematic bias

toward missing the largest bank failures in the samples.  However, an unfavorable pattern in the

predicted probabilities for the failed banks is that they are normally either 1.0 or 0.0 (i.e., no

chance of survival or failure, respectively).  Because estimated probabilities of failure are

consistently extreme the logit results may not be very reliable.  Also, the logit models give

inconsistent predictions for individual large failed banks using one-year-prior and two-prior

models – that is, both logit models correctly predicted only seven failures in the n = 25 failed

bank sample, four failures in the n = 15 failed bank sample, and three failures in the n = 10 failed

bank sample.  Thus, not only do the one-year-prior and two-years-prior models perform no better

than chance in predicting large bank failures, the predictions are not stable for any particular

large bank as the failure event approaches.

Table 9 details the number of safe and unsafe votes obtained for each large failed bank

using the trait recognition models for the different sample sizes.  As before, missed predictions

are marked with an asterisk.  While some of the misclassified failed banks had no unsafe votes

(i.e., tantamount to zero probability of failure using logit), most of the misclassified banks did

have one or more unsafe votes.  Also, for the correctly identified failed banks, the number of safe
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and unsafe votes varies considerably from one sample to another, and these differences imply

greater or lesser risk of failure.  Hence, unlike the logit results, the trait recognition results can

convey the degree to which the risk of failure is growing.  Finally, comparing the predictions

based on the one-year-prior and two-years-prior models, in the n = 25, n = 15, and n =10 samples

of failed banks, the number of failures predicted by both models is 18, 8, and 8, respectively.

These results are more stable than those for logit and suggest that the trait recognition models

give fairly consistent EWS signals about large banks using one-year-prior and two-years-prior

data.

IV.  Summary and Conclusions

The present study empirically examined the efficacy of using computer-based EWS

models to assess the risk of failure of large U.S. commercial banks.  Because of a lack of

sufficient data points in the past, few studies have been published on this subject, with the

exception of studies of stock prices and failure risk and case studies of individual large bank

failures.  In the late 1980s and early 1990s, numerous large banks failed in the United States.

These failures allowed us to gather a sample of 50 large banks with more than $250 million in

assets.  To them, we added a matched-pair sample of 50 large non-failed banks. Using these data,

we compared the predictive ability of logit analysis, a parametric approach, with that of trait

recognition, a nonparametric approach.

While both EWS methods performed well in terms of classification accuracy using

original samples, trait recognition outperformed logit in a variety of tests using holdout samples.

Based on one-year-prior and two-years-prior models and different holdout samples, the

predictive accuracy of the logit models was moderately successful.  By comparison, the

predictions of trait recognition models were substantially accurate using one-year-prior and two-
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years-prior data.  Trait recognition was able to predict most of the failures both one and two

years prior to collapse. And trait recognition’s ability to identify a higher number of failing large

banks than logit was not achieved by misclassifying a greater number of non-failing banks. The

weighted efficiency scores for trait recognition models surpassed those of logit models in all test

cases.  Further results from the evaluation of the individual large banks’ risks of failure one year

and two years prior to failure suggested that trait recognition provided more stable EWS signals

than logit in the years preceding failure.

We conclude that trait recognition is a potentially useful early warning system for large

failing banks.  Apparently, complex two- and three-variable interactions captured by the trait

recognition method contain valuable information about large bank failure risk.  In light of the

ongoing consolidation in the banking industry in the United States and other countries, further

studies should investigate large banks’ risks of failure.  Research on predicting capital

inadequacy (as defined by regulatory standards), securities investment losses, and other types of

bank risk among large banks would be a logical extension of the bank EWS literature.

We believe EWS models developed on a one-year-prior or two-years-prior performance window

are useful as supervisory tools.  Accurately identifying large banks that are likely to fail within

the next two years may provide sufficient time for supervisors to impose restrictions that reduce

resolution costs.  However, a one- or two-year window may be too narrow for implementing

corrective actions to avert failure/closure.  Models that identify problem banks three years or

even four years prior to failure/closure may be more useful as EWS tools for the purpose of

implementing corrective actions to avoid failure.  However, identifying problem banks so early

in their decline using only publicly available data is much more difficult empirically. Selecting

reliable samples and designing a practicable model will be formidable tasks.
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Footnotes

1. See Altman and Saunders (1998) for an excellent overview of this literature and additional

citations.

2. Bank failure or closure is a supervisory action that occurs when the regulators recognize

book-valued insolvency, a condition that may not be consistent with the timing of market-

valued insolvency.  It is essentially an administrative option that reflects the condition of the

bank but is applied at the discretion of the banking authorities (see Demirguc-Kunt (1992) for

a more detailed discussion on the differences between insolvency, failure, and closure).  The

failure model presented below does not predict either book- or market-valued insolvency per

se.  That is, the model is not designed to measure or forecast the solvency of specific

institutions or attempt to identify factors that suggest a bank will be insolvent in the near

future.  A more complex analysis of the expected market value of equity would be required

to address that issue.  The development of an empirical insolvency-based prediction model is

made more difficult because the regulator may intervene to force changes that may avert

insolvency.  Also, the intangible value of a bank’s liabilities is difficult to measure from

industry-level data such as call report data but can be important when troubled banks are

purchased.

3. Another possible policy response to large bank fragility and the potential for systemic risk is

to increase market discipline (see Kaufman (1999)).

4. According to FDIC Annual Reports, the total number of U.S. failed banks (by year) in this

period was as follows:  207 (1989), 169 (1990), 127 (1991), and 127 (1992).  This pace of

failures far surpassed the historical average of fewer than 25 banks per year.

5. This small sample facility of trait recognition is also apparent in previous applications to

geophysics problems involving the prediction of seismic risk (e.g., see Gelfand et al. (1976),

Briggs, Press, and Guberman (1977), Caputo et al. (1980), Benavidez and Caputo (1988))

and mineral deposits (e.g., see Bongard et al. (1966) and Briggs and Press (1977)).
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6. In the present study we employ the Bongard et al. (1966) algorithm used in geophysical

studies, which has been generalized by Kolari et al. (1966) to finance and economics

problems.

7. As a further example, the traits method explores numerous interactions between any two

variables X1 and X2.  Given the use of two cutpoints for each variable’s distribution, the

interactions between the segments of the two variables’ distributions can be written as

follows (where L = lower segment of the variable distribution, LM = lower and middle

segments, MU = middle and upper segments, and U = upper segment):

X1L/X2L X1LM/X2L X1MU/X2L X1U/X2L
X1L/X2LM X1LM/X2LM X1MU/X2LM X1U/X2LM
X1L/X2MU X1LM/X2MU X1MU/X2MU X1U/X2MU
X1L/X2U X1LM/X2U X1MU/X2U X1U/X2U

If three variables are considered, it is obvious that a large number of complex interactions are

possible between the different segments of their distributions.

8. By inference, it seems plausible that a similar finding is possible in other areas of finance that

use accounting and financial data to predict such outcomes as private nonfinancial firm

failure, bond ratings, etc.

9.   Given the success of the interaction variables in the trait recognition models, we

contemplated including interaction variables in the logit models.  However, while the 28

predictors can be taken two at a time and then three at a time to define a large number of

interaction variables (more than 1,000 new variable definitions), this type of exhaustive

exploratory search is not consistent with its application in the finance and banking literature.

Nor is it designed to explore a vast number of possible variable interactions.  Also, as

mentioned, the standard practice of constructing interaction variables by means of

multiplicative transformations would not capture the more complex and numerous

interactions captured by trait recognition.
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Appendix.  Description of Trait Recognition

In this section we describe the steps involved in building a trait recognition model (see

Kolari et al. (1996)).  Figures 1 to 3 give a simple example for illustrative purposes.  We assume

that the sample consists of five failed banks (denoted a, b, c, d, and e) and five non-failed banks

(denoted A, B, C, D, and E).  Also, we assume that three financial ratios – namely, X1 = net

income/total assets, X2 = loan losses/total assets, and X3 = equity capital/total assets – are used

to measure bank financial condition.  Each ratio is calculated one year prior to the collapse of the

failed banks for the 10 banks under examination.

Step 1 – Recoding the variables into binary strings.  Recoding can be done using a

general partitioning rule or researcher intuition.  A general partitioning rule may take the

following form:  one standard deviation around the sample mean is calculated and the

distribution of values for a particular variable is partitioned into three segments using two

cutpoints at plus or minus one standard deviation.  The lower, middle, and upper segments of the

distribution defined by the two cutpoints are coded, 00, 01, 11, respectively.  Given j = 1, …, n

banks and i = 1, …., p variables, the jth bank’s vector of variables Xij = [X1, …, Xp] is recoded

into binary form Xij = [B1, B2, …. BL], where L is the length of the string and two digits describe

each variable.  For example, variable vector [X1, X2, X3] = [010011] implies that bank j is in the

middle (01), low (00), and upper (11) segments of the distributions of X1, X2, and X3,

respectively.

Alternatively, the researcher could produce graphs of the distributions of the variables

and then visually select two cutpoints for each variable.  In this way the researcher derives the

cutpoints based on experience and intuition.  This option provides the researcher with a good

grasp of the raw data entering the model, as well as control over the  binary coding process.

Researcher judgment is used to set thresholds at which the value of a variable is considered low
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or high (e.g., regulatory practice applies specific capital ratios to divide banks into well-

capitalized, adequately capitalized, and undercapitalized groups).  The general notion is to set the

cutpoints such that the low segment has primarily (for example) failed banks and vice versa for

the upper segment.  The middle segment is a mix of failed and non-failed banks.  At times only

one cutpoint is possible because there is no clear middle segment (i.e., only low and upper

segments are coded).  Also, some variables have distributions that have failed and non-failed

banks mixed throughout their distribution.  In those cases the variable can either be dropped or a

cutpoint can be selected based on theory or practice.  We illustrate the recoding process in panel

A of figure 1.  In this example the distributions for X1, X2, and X3, as well as the cutpoints

selected by the researcher, are presented.  Based on figure 1, the 10 sample banks are coded into

binary strings, as shown in panel B.  Finally, it should be noted that more than three segments are

possible and a different binary code could be assigned to each region (e.g., a three-digit code);

however, previous research has suggested that having more than three segments does not

substantively increase predictive power.

While the binary coding of a continuous variable would seem to throw out cardinal level

data, the cost of this loss of information is offset by:  (1) the ability to construct a variety of

complex interaction variables that are not possible with cardinal data (to be discussed shortly),

and (2) the advantage of applying fuzzy logic to capture general patterns in the data.  Regarding

the latter advantage, because the model is dependent on general patterns in the variables, trait

recognition is less data-sensitive than models using cardinal variable measurements to outlier

biases.  This emphasis on general patterns may contribute to a more stable model over time than

methods that focus on small increments in variables.

Step 2 – The binary strings are converted to trait matrices.  Notice that the individual

bank binary strings in the trait matrix have different patterns, with the exception of failed banks
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c and d with the identical string 011100.  Furthermore, there appear to be patterns in these binary

strings that distinguish failed from non-failed banks;  for example, X1 (or profit rate) and X3 (or

capital ratio) tend to have 0 codes for failed banks and 1 codes for non-failed banks, whereas X2

(or loans/assets ratio) normally has 1 codes for failed banks and 0 codes for non-failed banks.

These different patterns suggest that the binary strings may be useful in discriminating between

failed and non-failed banks.

Figure 2 gives details of how binary strings use fuzzy logic to define the patterns among

observations under study.  The value of a digit in the binary string gives the general location of

the observation (bank) in each variable’s distribution.  For example, if the first digit of variable

X1 equals 1, this implies that the bank’s rate of return on assets is in the upper segment of the

distribution, as determined by the cutpoints.  Alternatively, a 1 for the second digit of X1

coincides with either the middle or upper segments of the distribution.  We denote the five

possible locations in any variable’s distribution as follows:  lower (L), middle (M), upper (U),

lower/middle (LM), and middle/upper (MU).  Figure 2 gives an example of how to read the data

encoded in a binary string for failed bank e, as defined in panel B of figure 1.

The string of binary codes is recoded to explore interactions between patterns within the

binary strings.  To do this a matrix of traits for each bank is created from its binary string.  The

traits matrix considers all possible combinations of the variables taken one, two, and three at a

time and, therefore, catalogues all interrelations between the variables.  More specifically, each

trait (T) contains an array of six integers, T = p,q,r,P,Q,R, where p, q, and r are pointers to

positions in the binary string, and P, Q, and R give the values of the binary code at their

corresponding positions p, q, and r.  The basic rules for constructing the traits matrix for binary

string of length L are as follows: p = 1, …, L; q = p, p+1, …, L; r = q, q+1, …, L; P = 0 or 1; Q =

0 or 1; and R = 0 or 1.
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For example, the trait matrix for failed bank e with binary string 110100 can be created

by considering all possible combinations of the six digits taken one, two, and three at a time as

follows:

________ ________ ________
p q r PQR p q r PQR p q r PQR
1 1 1 111 2 3 3 100 1 2 4 111
2 2 2 111 2 4 4 111 1 2 5 110
3 3 3 000 2 5 5 100 1 2 6 110
4 4 4 111 2 6 6 100 2 3 4 101
5 5 5 000 3 4 4 011 2 3 5 100
6 6 6 000 3 5 5 000 2 3 6 100
1 2 2 111 3 6 6 000 2 4 5 110
1 3 3 100 4 5 5 100 2 4 6 110
1 4 4 111 4 6 6 100 3 4 5 010
1 5 5 100 5 6 6 000 3 4 6 010
1 6 6 100 1 2 3 110 4 5 6 100

As shown above, there are 33 traits for this six-digit string.4  Notice that the traits matrix allows

for all possible interactions of the segmented variables’ distributions.  The trait 111111 points

only to variable X1, where the location of the bank is the upper segment of X1’s distribution.

Trait 133100 points to variables X1 and X2, where X1 is in the upper segment of its distribution,

and X2 is in the lower or middle segments of its distribution (see figure 2).  Likewise, trait

236100 points to variables X1, X2, and X3, where X1 is in the middle or upper segments, X2 is

in the lower or middle segments, and X3 is in the lower segment.  Notice that the combination

236100 is identical to 632001, such that the latter trait is redundant and can be dropped from

consideration.  A different traits matrix is generated for each bank with a different binary string.

Step 3 – The features in the trait matrices are retained.  Since the size of the traits matrix

increases greatly as the number of digits in the binary string increases (because of factorial

mathematics), and each bank has its own traits matrix, even problems with only 10 independent

variables can quickly exhaust computer disk space.  So, only traits that are useful in

discriminating between failing and non-failed banks are retained.  These traits are known as
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features.  A safe feature is a trait that is present frequently in non-failed banks but infrequently in

failed banks, and vice versa for unsafe features.  For example, if a particular trait (or six-digit

sequence of binary codes) is found in a minimum of 75 percent of the failed banks and a

maximum of 25 percent of the non-failed banks, it could be designated as an unsafe feature.

(The percentages defining safe features and unsafe ones are of necessity ad hoc.)  Previous work

by Kolari et al., as well as our own experience, suggests that at least five safe and five unsafe

features (i.e., 10 total features) are needed to discriminate between failed and non-failed banks.

Also, using as many as 100 safe or unsafe features is excessive and does not make the model

more discriminating.  In general, the researcher should experiment with relaxing minimum and

maximum percentage limits to increase the number of safe and unsafe features and observe

whether the model is more discriminating.  Setting strict percentage limits tends to throw out

valuable information that can increase the model’s performance, while lenient limits collects

excess information with marginal incremental discriminatory power (or no added predictive

value).  Finally, the traits program filters out features that duplicate the observations of some

other feature.

Step 4 – The safe and unsafe features are used to vote on each bank.  At this point the

remaining safe and unsafe features can be used to “vote” on each bank in the sample and then

classify the banks.  The numbers of safe and unsafe votes for each bank are tallied and a voting

matrix is constructed.  Panel A of figure 3 gives a hypothetical list of three unsafe and three safe

features.  Panel B shows the voting results for the sample banks defined in figure 1.  Finally,

panel C illustrates the voting matrix for the sample banks. If the failed banks outnumber the non-

failed banks in a cell, the cell is unsafe; if the failed banks outnumber the non-failed ones, the

cell is safe. If no banks fall in a cell, it is not classified.  For cells with equal numbers of failed

and non-failed banks and for unclassified cells, if the safe votes outnumber the unsafe, the cell is
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safe; if unsafe votes outnumber the safe, the cell is unsafe.  Other cells can be manually

classified as safe or unsafe according to researcher judgement.   If no banks fall in mixed cells, a

100 percent correct classification rate will be obtained.  Only if banks are located in mixed cells

will the overall classification rate be less than 100 percent.  By running the traits program a few

times with different minimum and maximum percentage limits in the features selection step, a

voting matrix with no mixed cells can normally be achieved.  Thus, unlike virtually all other

EWSs, the original sample traits program typically yields 100 percent correct classification.

If there are few observations and the number of features is quite high so that a large

voting matrix is created (e.g., 60x60 matrix with 3,600 cells but only 40 observations), most cells

will be unclassified and the aforementioned simple decision rule will be applied to most

observations in a holdout sample.  The holdout sample classification results are weaker in this

instance than could be obtained by using a smaller voting matrix with fewer

unclassified cells and a greater proportion of cells classified as safe or unsafe based on the

original sample data.  In effect, concrete decision rules determined by the original sample data

are more effective in holdout sample prediction than naïve rules that simply count the number of

safe and unsafe votes and then classify a cell on that basis alone.  In this regard, a benefit of the

voting matrix is a visualization of the pattern of failed and non-failed banks in the two-

dimensional space defined by safe and unsafe features.  One might intuit from panel C of figure

3, by casual inspection it is intuitively obvious that banks with two or more unsafe features are

very likely failing and that banks with one unsafe feature are suspect.  The voting matrix enables

the analyst to quickly understand where an individual bank under investigation lies in the safe

and unsafe features space relative to other banks.

Step 5 – A two-stage model is developed under certain conditions.  We added another

step to the traits program analysis if a considerable proportion of our sample banks inhabited
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mixed cells.  In Kolari et al. (1996) the classification results were improved by using multiple

stages of traits models.  The first stage model is used to classify banks that are easily identified

as failing or non-failing.  Banks that fall in mixed cells (or gray areas) are held out as a separate

subsample, and an entirely new traits model is developed to identify these banks.  This procedure

takes advantage of the fact that the traits program works well with small numbers of

observations.  Additionally, the program focuses attention on banks in gray areas, which are the

crux of most classification problems.  We arbitrarily set the minimum number of banks in mixed

cells at 10 failed banks and 10 non-failed banks to allow sufficient observations to build a second

model if needed.

Of course, any model developed from limited numbers of observations is narrowly

specified and may well yield incorrect predictions.  One way to mitigate this shortfall is to

continually update the model for any unpredicted failures (i.e., Type I errors) by tagging the cell

in which the failed bank falls, such that a repeat of the same mistake is avoided.  This learning

process of updating and improving the traits model is intended to continually strengthen the

model as it gains further experience with the objects under study.
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Figure 1
Selection of Cutpoints Based on Distributions of

Financial Ratios and Subsequent Binary Strings Coding of Banks
                                                                                                                                                            
Given the following sample banks: Failed banks:  a, b, c, d, e

Non-failed banks:  A, B, C, D, E

A.  Selection of cutpoints in distributions of variables

X
net income

1 =
total assets

X2 =
loan assets
total assets

X 3 =
equity capital

total assets

B.  Binary strings coding of observations

                             Failed banks                                                         Non-failed banks
                             X1          X2          X3          X1          X2          X3

a 0 0 1 1 0 1 A 0 1 0 0 1 1
b 0 0 1 1 0 0 B 1 1 1 1 1 1
c 0 1 1 1 0 0 C 1 1 0 1 0 1
d 0 1 1 1 0 0 D 1 1 0 1 1 1
e 1 1 0 1 0 0 E 1 1 0 0 0 1
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Figure 2
Fuzzy Logic of Binary Strings

                                                                                                                                                            
A.  Binary strings and variables (Xj)

Binary string:    110100
Positions (pqr): 123456

X1 = positions 1 and 2
X2 = positions 3 and 4
X3 = positions 5 and 6

B.  Binary strings and segments of variable distributions

For each variable X1, X2, and X3, and given the following coding scheme based on the
distribution of observations as described in figure 1:

00 (Lower) | 01 (Middle) | 11 (Upper)

• If the first digit = 0, the observation is in the lower or middle (LM) segment of the
variable distribution;

• If the first digit = 1, the observation is in the upper (U) segment of the variable
distribution;

• If the second digit = 0, the observation is in the lower (L) segment of the variable
distribution; and

• If the second digit = 1, the observation is in the middle or upper (MU) segment of the
variable distribution.

C.  Interpreting binary strings

For the binary string of the individual bank given above in panel A:

Positions (pqr) 1 2 3 4 5 6
Binary string values (PQR) 1 1 0 1 0 0
Variables X1 X1 X2 X2 X3 X3

Segment of variable distribution U MU LM MU LM L
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Figure 3
Using Features to Construct the Voting Matrix

                                                                                                                                                            
A.  Interpreting features

         Features:      Relationship of the features to:
         No.  Type      p      q      r       P      Q     R                             Variables                Segments                               
         #1.   Unsafe 2 5 6 0 0 0 X1 X3 X3 L LM L
         #2.   Unsafe 2 3 5 0 1 0 X1 X2 X3 L MU LM
         #3.   Unsafe 1 2 6 0 1 0 X1 X1 X3 LM L L
         #4.   Safe 1 2 5 1 1 1 X1 X1 X3 U MU U
         #5.   Safe 2 2 5 1 1 0 X1 X1 X3 MU MU LM
         #6.   Safe 2 3 6 1 0 1 X1 X2 X2 MU LM MU

L = Lower segment           LM = Lower or middle segment
M = Middle segment         MU = Middle or upper segment
U = Upper segment

B.  Voting on binary strings of banks based on features

                                               Votes:                                                   Votes:
Failed banks                          Safe  Unsafe  Features  Non-failed banks                     Safe  Unsafe  Features
a 0 0 1 1 0 1 0          1        #2 A 0 1 0 0 1 1 1         0           #6
b 0 0 1 1 0 0 0          2      #1,#2 B 1 1 1 1 1 1 1         0           #4

 c 0 1 1 1 0 0 1          1      #3,#5 C 1 1 0 1 0 1 2         0         #5,#6
d 0 0 1 1 0 0 0          2      #1,#2 D 1 1 0 1 1 1 2         0         #4,#6
e 1 1 0 1 0 0 1          0        #5 E 1 1 0 0 0 1 2         0         #4,#6

C.  Voting matrix

Unsafe Votes

0 1 2 3

a b, d

e, A, B c

C, D, E

Safe Cells:  (2, 0)
Unsafe Cells:  (0, 1), (0, 2), (1, 1)
Mixed Cells:  (1, 0)
Unclassified Cells:  (0, 0), (0, 3), (1, 2), (1,3), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)
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Table 1.  Large Failed Banks in Original and Holdout Samples
   

A.  Original Sample (n = 25)
Bank ID Name    MSA  Bank Assets a     BHC Assets a         Failure Date
652034 Southeast Bank NA 5000 15469836 15469836 09/91
870351 Mbank, Dallas NA 1920 7309953 22339037 03/89
653657 MBank Houston NA 3360 4828446 22339037 03/89
318554 Texas AMN Bank, Fort Worth NA 2800 2667164 5817439 09/89
784225 National Bank of Washington 8840 1923966 2031236 09/90
614957 Merchants Bank 8800 1694902 1694902 09/90
758066 NBC Bank, San Antonio NA 7240 1137517 2308082 06/90
1430912 Alliance Bank 380 1122637 1122637 06/89
996363 MBank Alamo NA 7240 856970 22339037 03/89
144258 Mbank, Austin NA 640 808506 22339037 03/89
531111 First New York Bank for Business 5600 665920 665920 12/92
938309 Capital Bank and Trust Co. 1120 507018 507018 12/90

7353 First City Texas, Austin NA 640 481653 13070185 12/92
61739 American Bank and Trust Co. 760 431764 490829 09/90

235802 Broadway Bank & Trust Co. 875 426315 426315 03/92
226453 Texas AMN Bank, Galleria NA 3360 398106 5817439 09/89
822707 University Bank NA 1120 398005 398005 06/91
145152 Louisiana  Bank and Trust 7680 393895 393895 03/89
329251 First  State Bank 40 385057 674591 03/89
678669 First City Texas, San Antonio NA 7240 369708 13070185 12/92
377056 Mbank Midcities NA 2800 369520 22339037 03/89
971904 Boston Trade Banks 1120 352142 352142 06/91
632102 Merchants Bank & Trust Co. 8040 319839 319839 03/91
744153 Bank of the Hills 640 303432 303432 03/91
637367 Mbank Jefferson County NA 840 289986 22339037 03/89

B.  Holdout Sample (n = 25)
Bank ID Name MSA  Bank Assets a    BHC Assetsa         Failure Date
913904 Bank of New England NA 1120 14292638 32635459 03/91
2509 Connecticut Bank & Trust Co. NA 3280 9735030 32635459 03/91
3850 First City Texas, Houston NA 3360 4829341 13070185 12/92

539201 CityTrust 1160 2240996 2240996 09/91
803014 First National Bank of Toms River 5190 1846892 1960839 06/91
546656 First City Texas, Dallas NA 1920 1734959 13070185 12/92
351038 First American Bank and Trust 8960 1566575 1566575 12/89
145303 Maine National Bank 6400 1255527 32635459 03/91
312253 Mbank, Fort Worth NA 2800 906754 22339037 03/89
798763 Independence Bank 4480 707501 707501 03/92
164658 First City Texas, Beaumont NA 840 707500 13070185 12/92
958156 First City Texas, Corpus Christi NA 1880 550563 13070185 12/92
944953 Metro North State Bank 3760 547220 547220 12/92
878508 Home National Bank of Milford 1120 520112 520112 06/90
518608 Nashua Trust Co. 5350 481543 610279 12/91
928654 First City Texas, El Paso NA 2320 475720 13070185 12/92
967121 Madison National Bank 8840 458192 784165 06/91
778701 Guaranty First Trust Co. 1120 440311 440311 12/92
656201 Guardian National Bank NA 5380 429529 429529 06/89
225410 Community Nat. Bank and Trust Co., New York 5600 396322 396322 12/91
234953 First City Texas, Bryan/College Station NA 1260 389845 13070185 12/92
694708 Coolidge Bank & Trust Co. 1120 345049 345049 12/91
483461 First City Texas, Tyler NA 8640 316760 13070185 12/92
670609 Landmark Bank 3280 277760 387723 03/91
886455 MBank Longview NA 4420 235254 22339037 03/89

aAsset sizes are based on the quarter immediately preceding the date of failure.
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       Table 2.  Independent Variables and Basic Statisticsa

Xj Variable Description

     One Year Prior:
   Original Sample
   Non-failed Failed

One Year Prior:
Holdout Sample
Non-failed Failed

Two Years Prior:
   Original Sample
  Non-failed Failed

Two Years Prior:
  Holdout Sample
Non-failed Failed

1 Total assets (millions) 1,453   1,756 1,400 1,827 1,422      1,732 1,422    1,732
2 Bank holding co. (BHC) total assets (millions) 24,903 7,958* 15,973 9,800 1,829     8,690 18,295    8,690
3 Maximum change in X1/mean X1 0.03    0.05 0.03       0.04 0.66      0.55 0.66      0.55
4 Maximum change in X1/mean change X1 0.73   -0.11 1.49       6.43 1.29      0.81 1.29      0.81
5 Net interest income/total assets 0.03 0.02* 0.03      0.02* 0.03      0.03 0.03      0.03
6 Max change in X5/mean X5 0.19    0.13 0.12      -0.09 0.26      0.22 0.26      0.22
7 Net income after taxes/total assets -0.001     -0.04* 0.01 -0.04* 0.001 -0.02* 0.001      -0.02*
8 Maximum change in X7/mean X7 -0.24  -15.75 -0.25      -1.08 -0.21 -4.14* -0.021     -4.14*
9 Total equity/total assets 0.06      0.03* 0.06 0.04* 0.06 0.05* 0.06        0.05*
10 Maximum change in X9/mean X9 0.07    0.25 0.08 0.15* 0.12 0.32* 0.12        0.32*
11 Allowance for loan losses/total assets 0.01      0.02* 0.01       0.02 0.01      0.02 0.01      0.01
12 Max change in X11/mean X11 0.16    0.26 0.13       0.19 0.59      0.34 0.59     0.34
13 Provision for loan losses/total assets 0.01 0.01* 0.01 0.01* 0.01 0.01* 0.01       0.01*
14 Maximum change in X13/mean X13 1.05    1.39 1.13       1.15 1.09      0.92 1.10      0.92
15 Net loan charge-offs/total assets 0.01 0.03* 0.01 0.02* 0.01      0.01 0.01      0.01
16 Maximum change in X15/mean X15 1.06    0.87 1.07       0.67 1.39 0.78* 1.39        0.78*
17 Maximum change in loans past due at least 90

days/mean of numerator
0.79    0.63 0.64       0.73 1.03      0.68 1.03      0.68

18 Total securities/total assets 0.17    0.15 0.19 0.14 0.15      0.14 0.15      0.14
19 Maximum change in X18/mean X18 0.09    0.17 0.09 0.15 0.76      0.63 0.76      0.63
20 Nondeposit liabilities/total liabilities -0.02     -0.17* -0.13 -0.17 0.02     -0.06 0.02     -0.07
21 Maximum change in X20/mean X20 1.69   -0.65 0.37 2.66 0.03 -1.57* 0.03     -1.57*
22 Certificates of deposit/total deposits 0.32      0.43* 0.37 0.40 0.37 0.43* 0.37       0.43*
23 Maximum change in X22/mean X22 0.07    0.07 0.08 0.03 0.24      0.10 0.24      0.10
24 Total loans and leases/total assets 0.56    0.63 0.61 0.63 0.59      0.64 0.59      0.64
25 Maximum change in X24/mean X24 0.06    0.08 0.07 0.10 0.12 0.05* 0.12        0.05*
26 Sum of key asset accounts/total assets (quantity

squared as in a HHI index)
0.04    0.05 0.05 0.05 0.04      0.05 0.04      0.06

27 Maximum change in X26/mean X26 0.18    0.26 0.16 0.23 0.42      0.53 0.42      0.54
28 Bank total assets/BHC total assets 0.50    0.60 0.53 0.54 0.41      0.59 0.45      0.60
aVariables are calculated at their levels in the quarter prior to failure for the failed  (n = 50) and matched-pair non-failed (n = 50) banks.  Numerous variables are calculated in change form.
For these change variables the maximum difference between quarters over the previous four quarters is divided either by the mean level of the variable or the mean change between quarters
as indicated in the denominator.  Asterisks indicate a significant difference at the 10 percent level between non-failed and failed banks’ mean values for a particular variable.
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Table 3.  Results of Stepwise Logit Modela

__________________________________________________________________

A. One Year Prior to Failure

1. Sample with n = 50 (25 failed banks and 25 non-failed banks)
Model: -3.38 - 1,854.80 X9 + 536.90 X11 + 9.46 X16 + 171.40 X22 + 22.89 X28

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 25 0      Fail 14 11
    Non-fail 0 25      Non-fail 4 21

Percentage Correct: 100.0%                               Percentage Correct:  70.0%

2. Sample with n = 30 (15 failed banks and 15 non-failed banks)
Model:  -168.40 - 1,527.50 X9 + 556.60 X22 + 153.70 X27

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 15 0      Fail 8 7
    Non-fail 0 15      Non-fail 1 14

Percentage Correct:  100.0%                                                Percentage Correct:  73.3%

3. Sample with n = 20 (10 failed banks and 10 non-failed banks)
Model: -22.12 + 52.38 X22 + 15.86 X27

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 9 1      Fail 5 5
    Non-fail 1 9      Non-fail 3 7

Percentage Correct:   90.0%                                 Percentage Correct:  60.0%
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Table 3, continued

B.  Two Years Prior to Failure

1. Sample with n = 50 (25 failed banks and 25 non-failed banks)
Model: 29.69 – 634.20 X7 – 1,063.00 X9 – 24.98 X20 – 5.44 X21 + 141.10 X26 – 37.38X28

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 25 0      Fail 11 14
    Non-fail 2 23      Non-fail 6 19

Percentage Correct:   96.0%                                 Percentage Correct:  60.0%

2. Sample with n = 30 (15 failed banks and 15 non-failed banks)
Model: -34.71 - 1,434.30 X7 - 2.09 X8 + 2,601.20 X11 - 3,414.50 X15 – 11.88 X16 +
51.55 X28

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 15 0      Fail 7 8
    Non-fail 0 15      Non-fail 2 13

Percentage Correct:   100.0%                                 Percentage Correct:  66.7%

3. Sample with n = 20 (10 failed banks and 10 non-failed banks)
Model: -38.70 - 5.25E-7 X2 - 1,541.20 X7 + 44.00 X10 + 727.10 X26

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 10 0      Fail 6 4
    Non-fail 0 10      Non-fail 1 9

Percentage Correct:   100.0%                                 Percentage Correct:  75.0%

_________________________________________________________________________________

aThe 28 variables listed in table 2 were entered as eligible for the stepwise logistic procedure.  Final
maximum likelihood estimates of the parameters were not possible for most models because of
sample size limitations.  Results are shown based on the last maximum likelihood iteration.
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Table 4.  Cutpoints for Variables in the Trait Recognition
    Models (n = 50)

One Year Prior Two Years Prior
Stage 1 Stage 1 Stage 2

Variable  Left Right  Left Right  Left Right
X1 -0.45 0.31 -0.36 0.25 -0.17 0.01
X2 -0.51 0.22 -0.52 0.53 -0.45 0.92
X3 -0.24 0.29 -.053 0.01  0.00 0.01
X4 -0.31 0.14 -0.63 0.01 -0.68 0.01
X5  0.00 0.01 -0.37 0.07 -0.01 0.89
X6 -0.21 0.01 -0.20 0.01 -0.10 0.01
X7  0.00 0.08 -0.28 0.18 -0.47 0.43
X8  0.00 0.19 -0.08 0.32 -0.06 0.02
X9 -0.03 0.05 -0.03 0.01 -0.09 0.01
X10 -0.13 0.01 -0.02 0.06  0.00 0.49
X11 -0.17 0.01 -0.53 0.01 -0.31 0.01
X12 -0.49 0.19 -0.54 0.69 -0.52 0.46
X13 -0.58 0.01 -0.51 0.27 -0.61 0.20
X14 -0.01 0.99 -0.67 0.67 -0.07 0.03
X15 -0.45 0.44 -0.27 0.10 -0.49 0.01
X16 -0.46 0.01  0.00 0.10 -0.56 0.13
X17 -0.50 1.89  0.00 0.04 -0.73 0.07
X18  0.00 0.01 -0.90 0.19  0.00 0.01
X19 -0.48 0.52 -0.34 1.19 -0.35 0.68
X20 -0.31 0.01 -0.49 0.27 -1.14 0.90
X21 -0.10 0.28  0.00 0.10 -0.14 0.01
X22  0.00 0.01 -0.17 0.31  0.00 0.53
X23 -0.14 0.01 -0.07 0.39  0.00 0.23
X24 -0.01 0.21 -0.59 0.59 -0.56 0.58
X25 -0.78 0.48  0.00 0.30  0.00 0.01
X26 -0.71 0.37  0.00 0.02  0.00 0.01
X27 -0.49 0.17 -0.17 0.61 -0.26 0.77
X28 -0.52 0.69 -0.54 0.37  0.00 0.33
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Table 5.  Trait Recognition Model Features (n = 50):  One Year and Two Years Prior to Failure
________________________________________________________________________________________________________________________________________________

A. One Year Prior to Failure (25 failed banks and 25 non-failed banks)
L   M U -Region L   M U -Region

1.   Safe Features (35) 00   01 11 -Coding 2.  Unsafe Features (36) 00   01 11 -Coding
Program Coding Variables and Location Program Coding Variables and Location

p q r P Q R   Xj (j=1, …, 28)       Region p q r P Q R   Xj (j=1, …, 28) Region
2 15 18  0 1 1 X1 X8 X9 L U MU 1 7 11 1 1 1 X1 X4 X6 U U U
2 15 20  0 1 0 X1 X8 X10 L U L 1 11 11 1 1 1 X1 X6 X6 U U U
2 17 22  0 1 0 X1 X9 X11 L U L 1 11 34 1 1 0 X1 X6 X17 U U L
9 18 30  1 1 0 X5 X9 X15 U MU L 1 11 42 1 1 0 X1 X6 X21 U U L
13 15 18  1 1 1 X7 X8 X9 U U U 1 16 16 1 0 0 X1 X8 X8 U L L
13 17 21  1 1 0 X7 X9 X11 U U LM 1 25 25 1 1 1 X1 X13 X13 U U U
15 17 18  1 1 1 X8 X9 X9 U U MU 2 16 16 0 0 0 X1 X8 X8 L L L
15 17 21  1 1 0 X8 X9 X11 U U LM 7 11 11 1 1 1 X4 X6 X6 U U U
15 17 22  1 1 0 X8 X9 X11 U U L 7 11 16 1 1 0 X4 X6 X8 U U L
15 17 49 1 1 1 X8 X9 X25 U U U 7 11 25 1 1 1 X4 X6 X13 U U U
15 18 19 1 1 0 X8 X9 X10 U MU LM 7 11 34 1 1 0 X4 X6 X17 U U L
15 18 24 1 1 0 X8 X9 X12 U MU L 7 11 42 1 1 0 X4 X6 X21 U U L
15 18 28 1 1 0 X8 X9 X14 U MU L 7 16 16 1 0 0 X4 X8 X8 U L L
15 18 30 1 1 0 X8 X9 X15 U MU L 7 16 25 1 0 1 X4 X8 X13 U L U
15 18 42 1 1 0 X8 X9 X21 U MU L 7 16 34 1 0 0 X4 X8 X17 U L L
15 18 51 1 1 1 X8 X9 X26 U MU U 7 18 18 1 0 0 X4 X9 X9 U L L
15 19 19 1 0 0 X8 X10 X10 U LM LM 7 25 25 1 1 1 X4 X13 X13 U U U
15 19 28 1 0 0 X8 X10 X14 U LM L 7 25 34 1 1 0 X4 X13 X17 U U L
15 19 30 1 0 0 X8 X10 X15 U LM L 7 29 29 1 1 1 X4 X15 X15 U U U
15 20 24 1 0 0 X8 X10 X12 U L L 9 9 9 0 0 0 X5 X5 X5 LM LM LM
15 20 28 1 0 0 X8 X10 X14 U L L 11 16 16 1 0 0 X6 X8 X8 U L L
15 20 30 1 0 0 X8 X10 X15 U L L 11 25 25 1 1 1 X6 X13 X13 U U U
15 20 49 1 0 1 X8 X10 X25 U L U 11 29 29 1 1 1 X6 X15 X15 U U U
15 20 51 1 0 1 X8 X10 X26 U L U 11 34 42 1 0 0 X6 X17 X21 U L L
15 24 30 1 0 0 X8 X12 X15 U L L 16 16 16 1 0 0 X8 X8 X8 MU L L
15 28 43 1 0 0 X8 X14 X22 U L LM 16 34 34 0 0 0 X8 X17 X17 L L L
17 21 28 1 0 0 X9 X11 X14 U LM L 18 18 18 0 0 0 X9 X9 X9 L L L
17 21 30 1 0 0 X9 X11 X15 U LM L 19 19 19 1 1 1 X10 X10 X10 U U U
17 22 28 1 0 0 X9 X11 X14 U L L 21 21 21 1 1 1 X11 X11 X11 U U U
17 22 30 1 0 0 X9 X11 X15 U L L 25 25 25 1 1 1 X13 X13 X13 U U U
17 22 49 1 0 1 X9 X11 X25 U L U 25 29 29 1 1 1 X13 X15 X15 U U U
24 30 51 0 0 1 X12 X15 X26 L L U 25 34 34 1 0 0 X13 X17 X17 U L L
24 30 54 0 0 0 X12 X15 X27 L L L 29 29 29 1 1 1 X15 X15 X15 U U U
28 30 38 0 0 0 X14 X15 X19 L L L 29 34 34 1 0 0 X15 X17 X17 U L L
28 30 51 0 0 1 X14 X15 X26 L L U 29 42 42 1 0 0 X15 X21 X21 U L L

42 43 43 0 1 1 X21 X22 X22 L U U
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Table 5, continued

B. Two Years Prior to Failure (25 failed banks and 25 non-failed banks)

L M U -Region L M U -Region
1.  Stage 1-- Safe Features (9) 00 01 11 -Coding 2.  Stage 1--Unsafe Features(5) 00 01 11 -Coding

Program Coding Variables and Location Program Coding Variables and Location
p q r P Q R  XJ (j=1,…,28)        Region p Q r P Q R  Xj (j=1,…,28) Region
  4 13 22 0 1 0 X2 X7 X11 L U L 17 17 17 0 0 0 X9 X9 X9 LM LM LM
13 14 22 1 1 0 X7 X7 X11 U MU L 17 18 35 0 0 1 X9 X9 X18 LM L U
13 15 30 1 1 9 X7 X8 X15 U LM L 17 18 38 0 0 0 X9 X9 X19 LM L L
13 44 44 1 0 1 X7 X22 X22 U 21 35 35 1 1 1 X11 X19 X19 U L L
13 51 51 1 0 0 X7 X26 X26 U L MU 21 38 38 1 0 0 X11 X19 X19 U L L
17 17 17 1 1 1 X9 X9 X9 U U U
20 26 26 0 0 0 X10 X13 X13 L L L
22 26 26 0 0 0 x11 X13 X13 L L L
22 51 51 0 0 0 x11 X26 X26 L LM LM

3. Stage 2--Safe Features (18) 4. Stage 2--Unsafe Features (14)
Program Coding Variables and Location Program Coding Variables and Location

p q r P Q R Xj (j=1,…,28)        Region p q r P Q R Xj (j=1,…,28) Region
4 19 21 0 0 0 X2 X10 X11 L LM LM  4 29 49 0 1 0 X2 X15 X25 L U LM

  7 13 38 1 1 0 X4 X7 X19 U U L 5 6 21 0 0 1 X3 X3 X11 LM L U
  7 13 39 1 1 1 X4 X7 X20 U U U 5 10 47 0 0 1 X3 X5 X24 LM L U
  7 19 41 1 0 1 X4 X10 X21 U LM U 10 17 17 0 0 0 X5 X9 X9 L LM LM
13 14 39 1 1 1 X7 X7 X20 U MU U 10 18 18 0 0 1 X5 X9 X9 L L LM
13 18 51 1 1 9 X7 X9 X26 U MU LM 10 18 29 0 0 1 X5 X9 X15 L L U
13 19 39 1 0 1 X7 X10 X26 U LM LM 10 18 32 0 0 0 X5 X9 X16 L L L
13 19 51 1 0 0 X7 X10 X26 U LM LM 10 18 46 0 0 0 X5 X9 X23 L L L
13 39 51 1 0 0 X7 X20 X26 U U MU 10 21 21 0 1 1 X5 X11 X11 L U U
13 51 51 1 1 0 X7 X26 X26 U U MU 10 21 32 0 1 0 X5 X11 X16 L U L
15 20 39 1 0 1 X8 X10 X20 U L U 10 29 32 0 1 0 X5 X15 X16 L U L
15 20 41 1 0 1 X8 X10 X21 U L U 18 29 32 0 1 0 X9 X15 X16 L U L
15 33 39 1 1 1 X8 X17 X20 U U U 29 46 49 1 0 0 X15 X23 X25 U LM LM
17 38 44 1 0 0 X9 X19 X22 U L L 29 47 47 1 1 1 X15 X24 X24 U U U
17 39 44 1 1 0 X9 X20 X22 U U L
17 41 44 1 0 0 X9 X21 X22 U U L
17 44 44 1 0 0 X9 X22 X22 U L L
17 44 54 1 0 0 X9 X22 X27 U L L
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Table 6.  Trait Recognition Model Results

A. One Year Prior to Failure

1. Sample with n = 50 (25 failed banks and 25 non-failed banks)
Model:  35 safe features and 36 unsafe features (see table 5)

Safe features – 80% minimum non-failed banks and
                         30% maximum failed banks
Unsafe features – 75% minimum failed banks and
                             40% maximum non-failed banks

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 25 0      Fail 23 2
    Non-fail 0 25      Non-fail 8 17

Percentage Correct: 100.0%                  Percentage Correct:  80.0%

2. Sample with n = 30 (15 failed banks and 15 non-failed banks)
Model:  9 safe features and 13 unsafe features

Safe features – 80% minimum non-failed banks and
                         20% maximum failed banks
Unsafe features – 72% minimum failed banks and
                             25% maximum non-failed banks

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 15 0      Fail 11 4
    Non-fail 0 15      Non-fail 2 13

Percentage Correct:  100.0%                                     Percentage Correct:  80.0%

3. Sample with n = 20 (10 failed and 10 non-failed banks)
Model:  6 safe features and 6 unsafe features

Safe features – 70% minimum non-failed banks and
                         30% maximum failed banks
Unsafe features – 80% minimum failed banks and
                             20% maximum non-failed banks

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 10 0      Fail 10 0
    Non-fail 0 10      Non-fail 1 9

Percentage Correct:  100.0%                               Percentage Correct:  95.0%
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Table 6, continued

B. Two Years Prior to Failure

1. Sample with n = 50 (25 failed banks and 25 non-failed banks)
Models: Stage 1 – 9 safe features and 5 unsafe features (see table 5)

 Stage 2 – 18 safe features and 14 unsafe features (see table 5)
              Safe features – 75% (Stage 1) or 79% (Stage 2) minimum non-failed banks and
                                           25% (Stage 1 and Stage 2) maximum failed banks

    Unsafe features – 75% (Stage 1) or 79% (Stage 2) maximum failed banks and
                                 25% (Stage 1 and Stage 2) minimum non-failed banks

   Original Sample Holdout Sample
Predicted:  (Stage 1/Stage 2) Predicted:  (Stage 1/Stage 2)

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 10/15=25 0/0=0      Fail 8/9=17 4/4=8
    Non-fail 0/0=0 12/13=25      Non-fail 5/2=7 7/11=18

Percentage Correct:  100.0%                                    Percentage Correct:  70.0%

2. Sample with n = 30 (15 failed banks and 15 non-failed banks)
Models:  11 safe features and 10 unsafe features

Safe features – 80% minimum non-failed banks and
                         40% maximum failed banks
Unsafe features – 85% minimum failed banks and
                             25% maximum non-failed banks

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 15 0      Fail 10 6
    Non-fail 0 15      Non-fail 5 9

Percentage Correct:  100.0%                               Percentage Correct:  63.3%

3. Sample with n = 20 (10 failed banks and 10 non-failed banks)
Model:  9 safe features and 12 unsafe features

Safe features:  70% minimum non-failed banks and
           40% maximum failed banks

Unsafe features:  70% minimum failed banks and
               10% maximum non-failed banks

   Original Sample Holdout Sample
Predicted: Predicted:

Actual: Fail Non-fail Actual: Fail Non-fail
    Fail 10 0      Fail 8 2
    Non-fail 0 10      Non-fail 4 6

Percentage Correct:  100.0%                               Percentage Correct:  70.0%
______________________________________________________________________________
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Table 7.  Weighted Efficiency Scores:  Logit and Trait Recognition Modelsa

   FCC     PF     AF      CC    WE
A.  Full holdout sample (n=50)
 One year prior:
         Logit
         Trait recognition
       Two years prior:
         Logit
         Trait recognition

14
23

11
17

18
31

17
24

25
25

25
25

70.0
80.0

60.0
70.0

30.5
54.6

17.1
33.7

B.   Holdout sample (n=30)
 One year prior:
         Logit
         Trait recognition
      Two years prior:
         Logit
         Trait recognition

  8
11

 7
10

  9
13

  9
15

15
15

15
15

73.3
80.0

66.7
63.3

34.7
49.6

24.2
28.1

C.  Holdout sample (n=20)
 One year prior:
         Logit
         Trait recognition
      Two years prior:
         Logit
         Trait recognition

  5
10

  6
  8

  8
11

  7
12

10
10

10
10

60.0
95.0

75.0
70.0

24.0
86.4

31.5
37.3

________________________________________________________________________________________________________________

aThe weighted efficiency score is calculated as follows:  WE = (FCC/PF)*(FCC/AF)*CC,
where FCC = the number of failed banks classified correctly, PF = the number of banks
predicted to fail, AF = the number of banks that actually failed, and CC = the percentage of
banks correctly classified.



43

Table 8.  Logit Predicted Probabilities for Large Failed Bank Holdout Samplesa

                       (ranked from largest to smallest in asset size one year prior to failureb)

Holdout Sample (n = 25) Holdout Sample (n = 15) Holdout Sample (n = 10)
Bank ID One Year Prior       Two Years Prior One Year Prior      Two Years Prior One Year Prior       Two Years Prior
913904 1.000   0.000* 1.000   0.000* 0.729   0.000*

2509 1.000   0.000* 1.000   0.000* 0.573   0.000*
3850 1.000 1.000 1.000 1.000   0.389* 1.000

539201 1.000 1.000   0.000* 1.000   0.034* 1.000
546656 1.000   0.000*   0.000* 1.000   0.012* 1.000
803014   0.000*   0.001*   0.000*   0.000* 0.820   0.000*
351038 1.000   0.002* 1.000 1.000 0.923 1.000
145303   0.000*   0.000*   0.000*   0.000*   0.036*   0.000*
312253 1.000 1.000 1.000   0.000* 1.000 1.000
798763   0.000* 1.000   0.000* 1.000   0.068* 1.000
958156   0.000*   0.000*   0.000*   0.000*
164658   0.000*   0.000* 1.000   0.000*
944953 1.000 1.000 1.000 1.000
778701 1.000 1.000 1.000 0.973
878508 1.000    0.000*   0.000*   0.000*
928654   0.000* 1.000
967121   0.000*   0.000*
518608   0.000* 1.000
694708 0.736 0.998
225410   0.001* 1.000
234953   0.000*   0.000*
483461   0.000*   0.000*
656201 1.000 1.000
670609 1.000   0.063*
886455 1.000   0.484*

aAn asterisk denotes a prediction error for a bank in a particular model and holdout sample.

bFor the asset size of each bank in the quarter immediately preceding the failure date, see table 1.
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     Table 9.  Trait Recognition Voting Results for Holdout Samples of Large Failed Banks a

                     (ranked from largest to smallest by asset size one year prior to failureb)

Holdout Sample (n = 25) Holdout Sample (n = 15) Holdout Sample (n = 10)
One Year  Prior Two Years  Prior One Year  Prior Two Years Prior One Year Prior Two Years Prior

Bank ID
 Safe      Unsafe
Votes     Votes

 Safe          Unsafe
Votes         Votes

 Safe        Unsafe
Votes       Votes

  Safe          Unsafe
Votes          Votes

 Safe          Unsafe
Votes         Votes

  Safe          Unsafe
Votes         Votes

913904 12 26 5 (5) 5 (13) 0 9 3 3 9 5 c 9   7 c

2509 7 25 6 2* 0 6 8  0* 0 0 1 1
3850 5 34 0 (0) 4 (7) 0 6 0 7 0 4 0 11

539201 0 35 0 (3) 5 (14) 0 6 0 10 0 5 0 6
546656 1 34 0 3 0 5 4 6 0 3 0 2
803014 32  21* 9 (18)  0 (1)* 9  2* 10  0* 5 5 8  0*
351038 10 12 5 (2) 5 (7) 1 2 2 3 1 1 4 7
145303 15 24 8 2* 1 6 7  0* 5 5 8  0*
312253 4 36 0 (1) 1 (10) 0 9 1 9 0 6 0 9
798763 5 22 0 (3) 5 (9) 7  4* 2 3 4 4 5 5
958156 9 25 4 2 c 6  1* 6  0*
164658 12 13 8 0* 5  4* 7  0*
944953 0 35 3 (4) 2 (4) 0 8 5 6
778701 0 36 1 (0) 2 (6) 0 8 2 7
878508 16 24 4  2 c 2 9 9 6*
928654 1 12 3 5
967121 24     9* 7 1*
518608 4 31 0 (5) 5(4)*
694708 4 20 4 2 c

225410 14 23 6 (1) 3 (3)
234953 1 13 6 (6) 0 (0)*
483461 5 12 4  2 c

656201 1 17 5 (8) 3 (2)*
670609 0 29 5  2 c

886455 0 22 0 3

aAn asterisk denotes a prediction error for a bank in a particular model and holdout sample based on the number of safe and unsafe
votes.  In the two-years-prior results for the n = 50 sample, a two-stage model was used, and stage 1 results (and stage 2 results in
parentheses) are shown.

bFor the asset size of each bank in the quarter immediately preceding the failure date, see table 1.

cThese banks had more safe votes than unsafe votes but were still predicted to fail.  The reason that they were not misclassified as safe
banks is that these cells in the voting matrix (e.g., 4 safe and 2 unsafe votes) were identified as unsafe in the procedure used to catalog
safe, unsafe, mixed, and unclassified cells.


